
VOL. 22 ISSUE 1  APRIL/MAY 2011   COMPUTERS & LAW MAGAZINE OF SCL 1

Contracts
www.scl.org

W
e live in fast-

moving times.

The current pace

of innovation is

exciting – but relentless, and

potentially daunting for anyone

trying to keep up.

In the technology

sector, for example,

Apple sold 3 million

iPads in the first

80 days following

its release in April

2010.1 In less than

a year this has

spawned a brand

new market for tablet

computers, and

changed the face

of computing. That

is great news for

consumers and

great news for

Apple, but it can be

challenging for the

competition.

Nokia’s recent

quarter-end results

show how quickly a

company’s market

share can evaporate

if it doesn’t keep up.

In just one quarter

Nokia’s share of the

smartphone market

dropped from 38%

to 31%, because

of its failure to

produce devices that

can compete with

Apple’s iPhone and

smartphones using Google’s

Android operating system.2

In the words of Nokia’s chief

executive ‘They changed the

game, and today, Apple owns

the high-end range’.3

The current pace of

innovation doesn’t just affect

branded products. All aspects

of information technology are

affected, and all products and

services that are underpinned

by information technology

are affected. And if any of

those products or services are

procured from third parties, the

contracts with the third parties

are also affected.

Traditional contract models
Traditional contract models were

designed for commoditised

products and services. They

are brittle and do not readily

embrace change. This is

because the products and

services are defined upfront,

and any change to this definition

requires an amendment to

the contract, which is usually

governed by the change control

mechanism. Instead of the

change control mechanism

embracing change, it is

generally regarded as fettering

and inhibiting change.

In a traditional contract

for the supply of products

and/or services, the products/

services are described in

the contract, the delivered

products/services are checked

for conformance with the

contractual description, and

various contractual rights and

obligations arise, depending on

whether or not the products/

services meet the contractual

description. This approach

is best encapsulated by the

expression made famous by

the Ronseal advert ‘It does

exactly what it says on the tin’.

Such an approach works

well for commoditised products

and services which can be

defined upfront, and there

will always be a place for the

traditional contract models.

However, many organisations

are in the business of

developing innovative and/or

complex products (eg software

development) and services (eg

the transformation of existing

services in business process

outsourcing). The issue here is

that the products/services cannot

be precisely defined upfront.

The ‘Ronseal label’ is essentially

conceptual and only represents

an approximate estimate of

what is required. There is often

great uncertainty surrounding

the definition of these innovative

and/or complex products and

services, and in the course of

the supplier trying to deliver what

the customer actually wants

there will inevitably be change.

The ‘Cone of Uncertainty’4

Researchers have found

that in software development

projects estimates are subject

to predictable amounts of

uncertainty at various stages

throughout the project. In this

context estimates could outline

how much a feature set will cost

and how much effort will be

required to deliver that feature

set, or they could outline how

many features can be delivered

for a particular amount of effort

or schedule. The ‘Cone of

Uncertainty’ (see figure overleaf)

shows how estimates become

more accurate as the project

progresses.5

The Curse of the Change
Control Mechanism

Contract change

management and

the limitations of the

traditional system for

dealing with change are

the topics covered by

Susan Atkinson and

Gabrielle Benefield.

They advocate a better

way

Contracts
www.scl.org

VOL. 22 ISSUE 1  APRIL/MAY 2011COMPUTERS & LAW MAGAZINE OF SCL 2

Software development is a

process of gradual refinement.

Initially there is a product

concept (the vision of the

software to be delivered) and

that concept is refined, based

on the product and project

goals. Software development

consists of making literally

thousands of decisions about

all the feature-related issues

of the software. Uncertainty

in a software estimate results

from uncertainty in how the

decisions will be resolved. As

a greater percentage of those

decisions are made, the level of

uncertainty should be reduced,

and therefore the accuracy

of the estimates should be

increased.

In other words, the accuracy

of a software estimate depends

on the level of refinement of

the software’s definition.6 The

more refined the definition, the

more accurate the estimate.

The reason why the estimate

contains variability is that the

software development project

itself contains variability. The

only way to reduce the variability

in the estimate is to reduce the

variability in the project.

It is important to appreciate

that the Cone of Uncertainty

represents the best-case

accuracy that it is possible

to achieve in estimates at

different points in a software

development project. This is for

two key reasons. First, the Cone

of Uncertainty represents the

error in estimates created by

skilled estimators. Secondly, the

Cone of Uncertainty is modelled

against well controlled projects.

So, if a software development

project is not well controlled or

the estimators are not skilled,

the project will not drive out

enough variability to support

more accurate estimates, and

it is likely that at any point in

time the estimates will be less

accurate than the Cone of

Uncertainty would suggest.

The presence of variability,

and therefore uncertainty, is not

limited to software development

projects. It is also found,

although to a lesser degree, in

any project for the development

of innovative and/or complex

products and/or services.

The erosion of the value
inherent in contractual
specifications
Not only is there inherent

variability, and therefore

uncertainty, in any project for

the development of innovative

and/or complex products and

services, but these projects

are also increasingly subject to

change from external influences.

The significance of the

impact of change on the

contractual specifications for

products and services cannot be

understated. Studies undertaken

at the University of Missouri,

Kansas City, demonstrate that

not only does the inherent value

of the specifications for products

and services decay over time

but that the pattern of the

erosion of their value is similar

to the pattern of decay exhibited

by an unstable radioactive atom.

Unstable radioactive atoms

decay exponentially. Their

rate of decay is described by

reference to a ‘half-life’, which

is a measure of the period of

time it takes for the substance

undergoing decay to decrease

by half.7

According to the University

of Missouri studies, the half-

life of the value of a set of

contractual specifications for

products and/or services has

been rapidly decreasing. In

1980 this was around 10–12

years, by 2000 it had fallen to

2–3 years, and it is currently

running at about 6 months.

In other words, if a contract

pre-defines the specifications

of products/services, half of

those specifications will become

obsolete by the end of month

6, half of the remaining half (ie

1/4) will become obsolete by

the end of month 12, half of the

remaining quarter (ie 1/8) will

become obsolete by the end of

month 18, and so on. Hence, by

the end of month 18, according

to the University of Missouri

studies, only 1/8 (or 12.5%) of

the contractual specifications

for the products/services will

still possess any inherent value.

If the University of Missouri

studies are to be relied upon,

the implications for commercial

contracts are enormous.

This would mean that if a

project is running six months

late, not only will the return on

investment be reduced, but the

project is less likely to deliver

what the customer actually

wants. Even if the project runs

according to plan, if the project

is scheduled to run for more

than a few months the parties

have to expect changes.

It is therefore essential that

commercial contracts are able

to adapt to the current pace

of ongoing and continuous

erosion of the inherent value in

any defined specifications for

products/services. However, in

the traditional contract models

the parties generally have to

 rely on an upfront description

of the products/services in

conjunction with the change

control mechanism to deal

with any changes to that

description.

The limitations of the change
control mechanism
Unfortunately the change control

mechanism is being pushed

to breaking point. When the

change control mechanism

was originally devised, it

served a useful purpose in that

it identified and segregated

Contracts
www.scl.org

VOL. 22 ISSUE 1  APRIL/MAY 2011   COMPUTERS & LAW MAGAZINE OF SCL 3

changes in the form of change

requests. These were worked

on separately from the main

project, so that the status quo

of the main project could be

preserved until the impact of the

change had been fully analysed

and signed off by the parties.

However, what we are

seeing today is that projects are

subject to so many changes

that the scope of the change

requests is increasingly wide-

reaching, there can be multiple

change requests under review

at any one time, and there

can be change requests to the

change requests. The process of

analysing the impact of change

requests can take so long and

be so extensive that it has a

destabilising effect on the main

team: they are only too aware

that their current work may be

rendered nugatory following the

approval of the change requests.

The bigger the proposed

change, the longer the hiatus

while it is being analysed, and

the more damaging the effects

can be.

Instead of facilitating

change, the change control

mechanism actually serves

to restrict change. The whole

process of documenting

changes is time-consuming,

consumes valuable resources,

can be expensive to implement,

and adds no real value to the

project. It simply attempts to

keep the contract in step with

the pace of change.

Furthermore, the change

control mechanism actually

fosters ‘bad behaviour’ between

the parties because it polarises

their interests. In a fixed price

contract it is not uncommon for

a supplier to attempt to improve

its profit margin by means of

inflating the charges for change

requests. And the customer is

put on the defensive, attempting

to justify why a proposed

change falls within the existing

specifications and does not

represent scope creep.

The change control

mechanism serves as a

distraction to the main project.

In any project, no matter how

large the organisation and how

big the project, only a finite

amount of resources will have

been allocated to the project.

This is for the simple reason

that any project has to be

justified on a cost-benefit basis.

When a change is requested,

a member of the team has to

be redeployed to analyse its

impact. If more change requests

are made, the number of team

members (or the associated

number of man hours) taken off

the main project and redeployed

to change management

activities increases, leaving the

main team less well resourced.

Given the wide-reaching

impact of many of the change

requests, it is not appropriate

for the analysis of the change

to be segregated and analysed

by a small sub-set of the team.

The impact of the change

should be considered by the

team as a whole and its impact

considered across all aspects of

the solution.

Too often, the change

control mechanism results

in add-ons without sufficient

consideration of which features

can be removed and how the

overall build can be rationalised.

This is because there is very

little incentive on the part of

the supplier to carry out this

exercise. What was once an

elegant solution with integrity

may evolve into some kind of

‘Frankenstein build’.

This is best illustrated by the

development of the M2 Bradley

Infantry Fighting Vehicle (IFV)

in the US. Originally developed

as an armoured personnel

carrier, the Bradley, after being

subjected to the changing (and

often conflicting) demands of

a panel of armchair generals,

was transformed into a hybrid

of a troop carrier, a scout

vehicle and an anti-tank weapon

platform. Seventeen years later

and at a cost of $14 billion

the resulting product was ‘a

troop transport that can’t carry

troops, a reconnaissance vehicle

that’s too conspicuous to do

reconnaissance, and a quasi-

tank that has less armor than a

snowblower, but carries enough

ammo to take out half of D.C.’.8

In terms of software

development, multiple

change requests can result

in duplications of code and/

or conflicts in the code. This in

turn can mean that the software

is more prone to failure, more

expensive to maintain, and

that subsequent design and

development of the software will

be more expensive.

Empirical process control
In projects for the development

of complex and/or innovative

products and/or services, where

the amount of variability – and

therefore uncertainty – is

significant, it is not practical

to work from defined plans.

Instead, Scrum advocates

the use of empirical process

control, that is, a form of control

driven by experience and

experimentation:9

‘Laying out a process that

repeatedly will produce

acceptable quality output

is called defined process

control. When defined

process control cannot

be achieved because

of the complexity of the

intermediate activities,

something called empirical

process control has to be

employed.’ 10

The basic attribute of empirical

process control constitutes a

continuous cycle of inspecting

the process for correct operation

and results, and adapting the

process as needed. There are

three key elements to controlling

an empirical process:

•	 Visibility. Those aspects

of the process that affect

the outcome must be visible

to those controlling the

process.

•	 Inspection. The various

aspects of the process must

be inspected frequently

enough so that unacceptable

variances in the process can

be detected. The frequency

of inspection has to take into

consideration the fact that

the process is likely to be

changed as a result of the

inspection. The inspector

must possess the skills

to assess what they are

inspecting.

•	 Adaptation. If the inspector

determines from the

inspection that one or more

aspects of the process are

outside acceptable limits and

that the resulting product

will be unacceptable, the

inspector must adjust the

process or the material being

processed. The adjustment

must be made as quickly as

possible to minimise further

deviation.

To achieve empirical process

control, Scrum establishes an

iterative, incremental framework.

It splits:

•	 the work: into a list of

small, concrete deliverables,

sorts the list by priority and

estimates the relative effort

of each;

•	 the time: into short fixed-

length iterations with

potentially shippable code

demonstrated after each

iteration; and

•	 the organisation: into

small, cross-functional self-

organising teams.

Contracts
www.scl.org

VOL. 22 ISSUE 1  APRIL/MAY 2011COMPUTERS & LAW MAGAZINE OF SCL 4

The Evolutionary Contract
Model
A new commercial contract

model, known as the

Evolutionary Contract Model,

has been created in conjunction

with some of the leading thinkers

on Agile and Lean for use in

projects for the development

of innovative and/or complex

products and/or services. The

main influences underpinning

this model originate in Agile,

Lean Software Development

(Lean) and systems thinking. The

relevant Agile methodologies are

Scrum, Extreme Programming

(XP), Evolutionary Project

Management (Evo) and DSDM

Atern.

Unlike the traditional

contract model, the Evolutionary

Contract Model is not based

on defined process control. In

other words, it does not place

any reliance upon pre-defined

plans and specifications. For

this reason, there are no

specifications or detailed plans

in the contract.

The fact that there are no

specifications for the solution in

the contract leads to a couple of

significant consequences. First,

there is no need for a change

control mechanism, because

neither the charging model nor

the supplier’s focus of work

is linked to any contractual

specifications. Secondly, there

are no contractual acceptance

tests because there is no supply

of products/services against

contractual specifications.

Instead, the Evolutionary

Contract Model uses empirical

process control to manage

complexity, variability and

change. The contract sets out

the overall scope of the solution.

This is expressed in terms of the

vision statement for the solution,

the product and project goals,

and any relevant constraints

(such as schedule constraints

or regulatory constraints).

The concept of the solution is

gradually refined, based on

the product and project goals

and within the parameters of

the relevant constraints. As

the solution evolves, many

things will change along the

way. Empirical process control

is employed to ensure that

the solution evolves within the

parameters of the contracted

scope.

An overview of the
Evolutionary Contract Model
The following overview

focuses on the construct of

the Evolutionary Contract

Model. This overview is merely

intended to demonstrate how

the principles of Agile and Lean

can be reflected in a contract.

It does not describe how the

Evolutionary Contract Model

regulates the full life cycle of the

project, nor does it describe how

a project which involves multiple

and distributed teams should

be structured. The Evolutionary

Contract Model caters for these

possibilities, but they are beyond

the scope of this article.

All of the customer’s desired

features of the solution are

captured in a central repository

known as the solution backlog.

The solution backlog does not

form part of the contract and has

no contractual status. However,

the solution backlog must be

within the scope of the contract.

The items on the solution

backlog (the solution backlog

items or SBIs) are prioritised

in terms of importance to the

customer, and may take the form

of products (including software),

deliverables or services. The

solution backlog may be, and

should be, amended and refined

by the customer throughout

the life of the project. It is this

ability of the customer to make

changes to the solution backlog

at any point in time that is key

to building flexibility into the

solution.

The development of the

solution is conducted in a

series of time-boxed iterations

of work. The iterations are of

fixed duration. They end on a

specific date whether the work

has been completed or not,

and must never be extended.11

Subsequent iterations build upon

the working solution increment

produced in earlier iterations.

At the beginning of each

iteration the customer selects

those SBIs from the solution

backlog which are the next most

important for the customer.

Once the supplier has agreed

upon those SBIs which it

believes it can complete during

that iteration, those SBIs are

effectively ‘frozen’. They cannot

subsequently be amended by

anyone during the iteration,

and the acceptance criteria for

those SBIs are agreed to by

the customer and the supplier

before work on the SBIs starts.

Each SBI is defined, built

and tested in a fast, concurrent

loop. An SBI is evaluated for

acceptance, and when it passes

the test, another SBI is selected

from the solution backlog. If it

fails, it is re-worked – on the

spot – until it passes the test.

The customer assesses whether

each SBI is ‘done’, and therefore

completed, by checking whether

the solution increment that is

delivered to the customer at

the end of the iteration meets

the criteria defined and agreed

by the customer and supplier

at the start of the iteration. To

the extent that the solution

comprises software, this means

that the code must be fully

tested, working and potentially

deployable.12 Warranties could

be given by the supplier in

terms of the solution increment

meeting the pre-defined criteria.

There are a number of

different charging models

available. Each of these has

advantages and disadvantages.

The optimum charging model is,

to a certain extent determined,

by the customer’s level of

experience of working in an

Agile and Lean way and by the

level of trust existing between

the customer and supplier.

Teams that are relatively new

to Agile and Lean often choose

to use a time and materials

model (which provides more

accountability than in the

traditional contract models);

teams that have been working

in an Agile and Lean way for

some time may choose to use

a charging model based on

units of work such as story

points or function points. More

advanced teams are looking to

link charges to a quantifiable

measure of value.

A team is established by the

supplier to develop the solution.

The team is both empowered by

the customer and accountable

to the customer to deliver the

project. On the one hand the

team has full discretion on how

it conducts each iteration, but

on the other hand the team

is expected to self-organise,

self-manage and self-achieve

the objectives of the iteration.

This means that the team must

be cross-functional and must

contain a sufficiently wide skill

set for the solution to be fully

completed by the team without

external input. There must

be representation from the

customer on the team, but the

roles of the supplier and the

customer are quite different.

Benefits of the

Evolutionary Contract Model

The Evolutionary Contract

Model reduces the element of

uncertainty and therefore risk

in the project both by breaking

down the solution into many

Contracts
www.scl.org

VOL. 22 ISSUE 1  APRIL/MAY 2011   COMPUTERS & LAW MAGAZINE OF SCL 5

small solution increments and

by breaking down the time into

short fixed-length iterations. At

the end of each iteration the

customer is given visibility of

the fully completed solution

increment. This gives the

customer the opportunity and

the power at regular intervals to

refocus the work of the supplier,

and potentially to refine the

ultimate solution, based on what

the customer has actually seen.

This ability of the customer to

plan adaptively throughout the

term of the project is incredibly

powerful.

The Evolutionary Contract

Model facilitates a fast and

cost-effective development

process. The solution increment

delivered at the end of each

iteration builds upon and is fully

integrated with all earlier solution

increments. In other words, the

solution starts to take shape

from the very first iteration and

continues to develop from there.

At any point in time the partially

developed solution will address

the customer’s most current

needs because at the start of

each iteration the customer has

the opportunity to refocus the

efforts of the supplier.

The customer may in fact

be able to achieve its objectives

for the solution and derive

value from the completion of

less than half of the features

that it originally thought were

necessary to build the solution,

applying the Pareto principle.

According to the Pareto principle

(also known as the 80–20 rule),

for many events roughly 80%

of the effects come from 20%

of the causes.13 It has been

demonstrated, for example,

in software that 80% of the

benefits of an application are

derived from the use of just 20%

of the features. This is borne out

by the results of the Standish

Group study, which reported that

64% of software features are

typically never or rarely used.14

Statistics on traditional and
Agile projects
Projects using Agile have been

found to be more successful and

more likely to be delivered on

time than traditional projects.

According to the Standish

CHAOS report for 2009 many

traditionally developed and

run projects were less than

successful: 44% were described

as challenged and 24% failed.

Similarly a report on the failure

rates of the US Department of

Defense projects in one sample

concluded that 75% of the

projects failed or were never

used.15

Those results can be

contrasted with the results

of several major studies to

determine the effects of using

Agile methods to manage

the development of software.

For example, according to an

international survey of 4,770

respondents conducted by

VersionOne in 2010, 46% of

respondents experienced an

improvement in their ability to

manage changing priorities,

and 39% of respondents

experienced improved project

visibility.16 On all the measures

investigated by VersionOne,

at least 94% of respondents

said the performance was

no worse and, in most

circumstances, was improved

over the situation before Agile

adoption. Similarly, according to

an international survey of 131

respondents conducted by Shine

Technologies in 2003, 93%

of respondents experienced

productivity increases, 88% of

respondents experienced quality

increases, 83% of respondents

experienced improvements in

customer satisfaction, and 49%

experienced cost reductions.17

Endnotes
1 ‘Apple sells three million iPads in 80 days’ press release on the Apple web site http://www.apple.

com/uk/pr/library/2010/06/22ipad.html.

2 ‘Nokia loses smartphone market share’ by Andrew Parker, published in the FT on 27 January 2011.

3 Stephen Elop, Nokia chief executive, as quoted in the Times on 10 February 2011.

4 With thanks to Steve McConnell whose book ‘Software Estimation: Demystifying the Black Art’

provides the basis for this section.

5 The original conceptual basis of the ‘Cone of Uncertainty’ was developed by Barry Boehm in 1981.

The model has since been validated, based on data from a set of software projects at the US Air

Force, NASA’s Software Engineering Lab and other sources.

6 According to research conducted by Luiz Laranjeira in 1990.

7 Al Goerner at the University of Missouri, Kansas City.

8 The development of the Bradley M2 fighting vehicle was satirised in the movie clip ‘The Pentagon

Wars’, available on YouTube http://www.youtube.com/watch?v=pyakI9GeYRs.

9 Scrum is the most popular Agile methodology, according to the survey ‘State of Agile Development’

commissioned in 2009 and sponsored by VersionOne.

10 ‘Agile Project Management with Scrum’ by Ken Schwaber. Ken Schwaber and Dr Jeff Sutherland

are the co-founders of Scrum.

11 There is a variation to this in the Evolutionary Contract Model based upon the principles of

Kanban.

12 Although the software is capable of being deployed, the customer may choose not to deploy the

software until it is at a greater level of maturity.

13 The Pareto principle was developed by Vilfredo Pareto, a noted economist and sociologist, in the

late 1800s.

14 Standish Group study reported at XP 2002 by Jim Jonson, Chairman; internal software products.

15 The US Department of Defense used to be one of the most frequent users of the traditional

waterfall methods of development. Throughout the 1980s and into the 1990s most projects run by the

US Department of Defense were mandated to follow a waterfall cycle of development as documented

in the published standard DOD STD 2167. That is no longer the case. Under the 2010 National

Defense Authorization Act President Obama gave Defense Department officials a deadline of July

2010 to create new acquisition processes that can deliver IT systems in no more than 18 months by

incorporating certain Agile principles.

16 ‘5th Annual State of Agile Development Survey’ conducted by VersionOne, dated 7 November

2010.

17 ‘Agile methodologies: Survey results’ conducted by Shine Technologies, 2003.

Contracts
www.scl.org

VOL. 22 ISSUE 1  APRIL/MAY 2011COMPUTERS & LAW MAGAZINE OF SCL 6

Conclusion
Unprecedented levels of change

arising from the increasing pace

of innovation are stretching

the traditional contract models

to breaking point. Legal

practitioners need to find a

better way to accommodate

change within their contracts.

More and more organisations

are adopting Agile and Lean

principles for the development

of innovative and/or complex

products and/or services. A new

contract model, the Evolutionary

Contract Model, based on

Agile and Lean principles has

been developed, and legal

practitioners should consider this

as a possible solution. ●

Susan Atkinson is Legal
Director at gallenalliance
Solicitors.

Gabrielle Benefield is Director
at the Scrum Training Institute.

Susan Atkinson and Gabrielle
Benefield are currently writing
a book on Evolutionary
Contract Models, which is due
to be published later this year.

