

Software Development: Why the Traditional Contract Model
Is Not Fit for Purpose

Susan Atkinson
Keystone Law

London, England
susan.atkinson@keystonelaw.co.uk

Gabrielle Benefield
Evolve Beyond Limited

London, England
gbenefield@evolvebeyond.com

Abstract
Many IT change initiatives involving the

development of software fail, and the scale of the
failures can be large. We believe that the traditional
contract model for software development is generally
responsible for these failures. Even if an IT project is
resourced internally, the organisation applies similar
management practices to the IT project as if it were
outsourced to a third party supplier.

The contract model contains three fundamental
elements, all of which are seriously flawed in the
context of software development. In any IT project the
contract model increases the risk of failure, and leads
to a suboptimal design and poor return on investment.
In this article we examine some of the ways in which
this happens. We also consider an alternative
approach, based on the principles of complexity
theory.

1. Introduction

In 2007 the UK Department for Communities and
Local Government (the DCLG) entered into a contract
with European Air and Defence Systems (EADS, now
known as Cassidian) to deliver an IT system that would
underpin the FiReControl project. The FiReControl
project aimed to improve the UK Fire and Rescue
Service by replacing 46 local control rooms with a
network of nine purpose-built regional control centres
using a national computer system to handle calls,
mobilise equipment and manage incidents. The project
was expected to be completed in October 2009, and the
DCLG's original estimate of the project costs was £120
million. By 2009, two years into the project, what was
meant to take two years was then expected to take four
years, and the anticipated total project costs had
increased by more than 500% to £635 million. In 2010
the contract was terminated. The DCLG had wasted at
least £469 million as a result of the failure of the

project to deliver [1].
In 2003 the Levi Strauss Company entered into

contracts with SAP and Deloitte to migrate its
fragmented and archaic IT system to a single SAP
system. Analysts estimated that the project would cost
USD 5 million without consulting fees. When the new
system was rolled out to the US market in 2008, the
three US distribution centres of Levi Strauss went
offline for a full week and Levi Strauss was unable to
fulfil orders. These shipping problems, combined with
other economic issues, caused the company's profits in
the second quarter of 2008 to fall to a miserly USD 1
million from USD 46 million in the year-earlier quarter
[2]. A project that was forecast to cost USD 5 million
ended up costing Levi Strauss nearly 40 times that
amount in terms of lost sales.

These are sobering stories of large IT projects
spiralling out of control. But they are not isolated
incidents. Indeed, about two thirds of all software
projects are delivered late or fail outright [3]. Not only
that, but one in six IT projects has a cost overrun of
200% on average and a schedule overrun of almost
70% [4]. It seems that no organisation is immune from
these risks. There was a common belief that out of
control IT projects were the preserve of the public
sector, but recent studies show that the private sector
does not fare any better in comparison. Organisations
in the private sector are simply less publicly
accountable and so have greater ability to conceal IT
disasters.

Software is now intrinsic to so many aspects of an
organisation, that it is inevitable that in the next few
years virtually every organisation will need to update
its existing IT systems or to develop new IT systems.
Not all organisations have deep enough pockets to
weather a project that is delivered late or fails outright,
and very few organisations can survive a project that
experiences a cost overrun of around 200% and a
schedule overrun of around 70%.

Auto Windscreens is an example of a successful

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.492

4840

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.492

4842

company that was forced into bankruptcy as a result of
a failed IT project. In 2006 Auto Windscreens was the
second largest automobile glass company in the UK,
with 1,100 employees and £63 million in revenue.
However, by the fourth quarter of 2010, a combination
of falling sales, inventory management problems, and
spending on a failed IT project resulted in its downfall.

So why are IT projects so high risk, and how can
this risk of failure be mitigated?
 There is a huge disconnect in the world of software
development. In theory, the legal and management
functions should sit in between, on one side, the
business function from which the need for the software
arises and, on the other side, the practice of software
development. The role of the legal and management
functions should be to structure and coordinate the
relationship between these two different areas.
However, the legal and management functions are
quite removed, both in language and in values, from
both the business function and the practice of software
development. The lawyers aim to make the
relationship as precise as possible and to regulate every
possible eventuality. However, both the business
function and the software development practitioners
are operating in an increasingly complex, dynamic and
inter-connected environment.
 The legal and management functions have, by and
large, not adapted their practices or values in recent
years to take account of the challenges faced by the
business functions and software development
practitioners. Indeed, the contract model for software
development (the "Contract Model") and the
management practices that surround it have barely
changed in the last thirty years. Much of the thinking
underlying the Contract Model is rooted in the
Industrial Revolution and the practices at that time as
developed by Henry Ford and Frederick Taylor.

Our view is that the Contract Model compounds the
effects of poor management, and that poor
management is often based on the flawed thinking
underlying the Contract Model. We have found that
even if an IT project is resourced internally, the
organisation applies similar management practices to
the IT project as if it were outsourced to a third party
supplier. Organisational policies often create
contractual relationships between departments inside a
single organisation that can produce the same effect as
the Contract Model.

We do not believe that we will see any significant
improvement in the success of IT projects until we
change the basis of the Contract Model and the
surrounding management practices. For the purposes
of this article we use the term "IT project" as shorthand
for any IT change initiative involving the development
of software.

2. The fundamentals of the Contract
Model

 We believe that any contract for software
development based on the Contract Model contains
three fundamental elements, all of which are seriously
flawed. We use the terms "supplier" and "customer" to
explain the dynamics in an external relationship.
However, as mentioned above, in many cases similar
principles appear to apply even if the IT project is
resourced internally.
 The three fundamental elements to any contract for
software development based on the Contract Model are
as follows:

� Output-Based Requirements. The supplier is
required to deliver output that possesses all of
the requirements, as specified by the customer
in the contract, by an agreed date. We use the
term "output" to refer to the deliverables of the
IT project. These may take the form of product
(e.g. code, features, functions, attributes),
documentation and/or services.

� Sequential Development. The software is to be
developed sequentially, that is, using the
waterfall model. Development is seen as
flowing steadily downwards - like a waterfall -
through the phases of conception, initiation,
analysis, design, construction and testing. The
supplier is required to complete each phase
before starting the next phase, and the output of
each phase provides the input for the next
phase.

� Change Control Mechanism. The Contract
Model mandates that any change to any Output-
Based Requirement or to any other element of
the contract must be regulated by the Change
Control Mechanism. Broadly speaking, to
initiate change the customer must submit a
change request form to the supplier outlining
the desired change. The supplier analyses the
impact of the change request on the contract as
a whole, including, in particular, the Output-
Based Requirements, the price and the due date
for completion of the IT project. On the basis
of this, the supplier proposes an amendment to
the contract. Following the agreement of the
parties to the proposed contract amendment
(which may involve lengthy negotiation of the
commercial terms), a formal amendment is
made to the contract to incorporate the
requested change.

 It is worth noting that we do not make any
reference to the type of charging model in the Contract
Model. If the three fundamental elements of the

48414843

Contract Model feature in a contract, the contract will
be flawed regardless of which charging mechanism is
adopted.1 It makes little difference whether the price is
fixed, target or based on time and materials, or whether
there are bonuses or penalties.
 On the face of it, and to a person that is not directly
involved in the implementation of the IT project, the
three fundamental elements of the Contract Model may
appear to be eminently sensible. They create a sense of
certainty and predictability regarding the IT project,
and they provide a clear and understandable structure
for the various activities involved in the IT project.
 However, the combination of these three elements
in a contractual relationship between a customer and a
supplier appears to cause the failure of many IT
projects that would probably otherwise succeed. In
fact, we would suggest that those IT projects which do
achieve success, do so in spite of the Contract Model
and the surrounding management practices, and not
because of them.
 In any IT project the Contract Model increases the
risk of failure, and leads to a suboptimal design and
poor return on investment. In this article we examine
some of the ways in which this happens.

3. An increased risk of failure

 Any IT project is subject to risk, which can be
categorised into three main types:

� Delivery risk. This is the risk that the IT project
is not delivered on time, on budget and to the
required quality.

� Business value risk. This is the risk that the IT
project doesn't deliver the expected business
value.

� Existing business model failure risk. This is
the risk that the IT project damages the existing
organisation.

 The Contract Model does not address the second
two categories of risk and actually increases the
customer's exposure to all three categories of risk.

3.1. Delivery risk

 The FiReControl Project is a classic example of the
delivery risk de-railing the IT project. The UK
National Audit Office noted that during the first two
years of the contract there was little progress in
delivering the IT system [5]. Indeed, the DCLG does

1 Sometimes the contract does not contain sequential development,
but even if the contract only contains the Output-Based
Requirements and the Change Control Mechanism it is almost as
problematic.

not appear to have received any working software
before the contract was terminated. We do not know
the reason for this but we can hazard a guess.
 An underlying rationale for the Contract Model is
that if changes are made to the Output-Based
Requirements during the development process, this can
lead to serious delay and an escalation in costs. The
Contract Model attempts to reduce this delivery risk by
effectively ring-fencing the IT project and controlling
the impact of any changes while the IT project is
underway.
 An important assumption underpins this thinking
behind the Contract Model. This assumption is that
the software can be finished before significant changes
occur. If, on the other hand, significant changes do in
fact occur while the software is being developed, over
time it becomes increasingly difficult to ignore the
impact of those changes on the IT project.
 In the 1980s, which - we believe - is when the
Contract Model was first used, it might have been a
reasonable assumption that the software could be
finished before significant changes occurred. But these
days the pace of change is so fast that the assumption
no longer holds true. Indeed, changes happen all the
time and are to be expected.
 Firstly, the internal dynamics of the IT project lead
to changes. It is only natural that, as the customer
learns more about the latest technology and its relative
strengths and weaknesses, the customer revises its
thinking on how best to take advantage of the
technology.

"… [S]ystems requirements cannot ever be stated
fully in advance, not even in principle, because the
user doesn't know them in advance – not even in
principle. To assert otherwise is to ignore the fact that
the development process itself changes the user's
perceptions of what is possible, increases his or her
insights into the application's environment, and indeed
often changes that environment itself [6]."
 Secondly, external forces are at play. Technology
is evolving at an ever increasing pace. The market or
context in which the concept for the software was
conceived continues to change. Hence, the
opportunities or risks to be addressed by the software
also change. For example, the emergence of disruptive
technologies such as Facebook, Twitter or the touch
screen IPad can have a huge impact on any existing
plans for software development and distribution. The
regulatory environment may also change.
 If changes happen, whether as a result of the
internal dynamics of the IT project or as a result of the
external forces at play, it is inevitable that this will
impact on the Output-Based Requirements. The
customer will wish to revisit the Output-Based
Requirements in the light of the recent changes.

48424844

 As a result, these days the Output-Based
Requirements are exposed to a large amount of change
over the course of the IT project, and the larger the IT
project, the greater the amount of exposure to such
change. In a study conducted by Capers Jones in 1997,
confirming the findings of an earlier study by Barry
Boehm and Philip Papaccio conducted in 1988, it was
found that in a typical software IT project 25-35% of
the requirements changed over the course of the IT
project [7]. More recently, Eric Ries has suggested
that this figure may be as high as 100% [8]. This is
very damaging for the IT project.
 As an integral part of the contract, the Output-
Based Requirements cannot be amended to reflect a
change without a formal amendment to the contract as
agreed by the parties in accordance with the Change
Control Mechanism. The initial stage of the Change
Control Mechanism is that the supplier analyses the
impact of the change requested by the customer. The
larger and more complex the IT project, and the greater
the amount of work that is involved in the supplier
carrying out this exercise. Sometimes, the impact of
the change request is so complex that the supplier
simply cannot work out how to incorporate the
requested change into the existing IT project.
 The process of analysing the impact of a change
request can take so long and be so extensive that it has
a destabilising effect on the IT project. The main team
is only too aware that current work may be rendered
redundant following the approval of the change
request. The bigger the proposed change, the longer
the hiatus while it is being analysed, and the more
damaging the effects can be [9].
 Any change request will inevitably cause delay to
the IT project. It is unlikely that the original timetable
builds in a buffer for the supplier's resources to be
diverted to this activity and for any resulting additional
work to be undertaken. If is for this reason that both
customers and suppliers consistently cite changes to
the Output-Based Requirements as one of the main
causes of failure of an IT project.
 To make matters worse, the Contract Model
mandates Sequential Development. It is not until
testing, late on in the IT project, that the customer has
visibility of the software. Up until that point it is very
difficult for anyone to assess whether the IT project is
on track. The deliverables of all earlier phases are
documents that are based on assumptions. It is only
when the software is actually built that anyone can
accurately assess whether the IT project is actually on
course to meet the Output-Based Requirements.
However, there is a long gap, often in the order of
years, between the date when the customer collects the
Output-Based Requirements and the date when the
supplier makes the first delivery of working software.

The longer this gap, and the more likely that significant
change has occurred during the intervening period.
 Recent studies, led by Al Goerner at the University
of Missouri, Kansas City, demonstrate that the inherent
value in Output-Based Requirements erodes
exponentially over time. This rate of decay has been
likened to the half-life of an unstable radioactive atom.
The 'half-life' is the measure of the period of time it
takes for the substance undergoing decay to decrease
by half.
 According to the studies carried out by the
University of Missouri, the half-life of the value of the
Output-Based Requirements has been rapidly
decreasing. In 1980 this was around 10-12 years, by
2000 it had fallen to 2-3 years, and it is currently
running at about 6 months.2
 In other words, half of the Output-Based
Requirements will become obsolete by the end of
month 6, half of the remaining half (i.e. 1/4) will
become obsolete by the end of month 12, half of the
remaining quarter (i.e. 1/8) will become obsolete by
the end of month 18, and so on. Hence, by the end of
month 18, according to the University of Missouri
studies, only 1/8 (i.e. 12.5%) of the Output-Based
Requirements will still possess any inherent value.
 If the University of Missouri studies are to be relied
upon, the implications for IT projects are enormous.
This would mean that if an IT project is running six
months late, the likelihood of the supplier delivering
what the customer actually wants is reduced by a half.
Even if the IT project runs according to plan, if the IT
project is scheduled to run for more than a few months
the parties have to expect significant changes.

3.2. Business value risk

 The FiReControl project highlights the importance
of demonstrating from the outset how the ICT project
will deliver the expected business value and of
obtaining the buy-in of all those involved. The DCLG
was criticised by the National Audit Office for not
making sufficiently clear the case for a centrally-
dictated standard model of emergency call handling
and mobilisation, operating from new purpose-built
regional control centres. From the start many local
Fire and Rescue Authorities and their Fire and Rescue
Services criticised the lack of clarity on how a regional
approach would increase efficiency [10]. Unless the
resulting software delivers tangible business value, it
doesn't matter how state of the art or sophisticated it is,

2 We have been unable to find out more details regarding these
studies. Clearly the half-life for the specifications will vary for
different sectors. However, there is anecdotal evidence to support
the view that the half-life could be even shorter in the technology
sector.

48434845

the intended end users may each simply decide not to
use it.
 The Contract Model does not address the
possibility of business value risk. There is, instead, an
assumption that if the supplier delivers software that
meets the Output-Based Requirements, it will therefore
deliver business value to the customer. However, this
in turn assumes that the customer knows what it needs.
What we have found instead is that, although
customers are very good at stating what they want, far
too often customers do not in fact know what they
need. As a result, it is not uncommon for the customer
to be disappointed with the resulting software, even if
the supplier can demonstrate that the software meets
the Output-Based Requirements.
 It is a sad indictment of the current state of software
development that one of the greatest risks is that the
supplier builds 'the wrong product'. This happens
whenever the supplier successfully executes against the
customer's specified Output-Based Requirements, but
the resulting software does not add any real value to
the customer. The software does not add value
because it does not enable the customer to solve the
problem that it had wanted to address.
 This is best illustrated by the findings from the US
Department of Defense (the DoD) [11]. The DoD
analysed the results of its software spending, totalling
an eye-watering $35.7 billion, during 1995. They
found that only 2 per cent (2%) of the software was
able to be used as delivered. The vast majority, 75 per
cent, of the software was either never used or was
cancelled prior to delivery. The remaining 23 per cent
of the software was only used following modification.
That would suggest that the DoD actually only
received business value from $0.75 billion of its
expenditure – nearly $35 billion of its expenditure did
not result in software that delivered any immediate
business value.
 The reason why customers to date have derived so
little business value from the software delivered by the
supplier is that the Contract Model is not referenced to
the target outcomes of the customer (that is, the results
that the customer wishes to achieve and which will add
value to the customer). Instead, the Contract Model is
referenced to the Output-Based Requirements, that is,
the requirements for the deliverables of the IT project
which are intended to contribute to and facilitate the
achievement of the target outcomes.
 People buy a hammer to knock in a nail so that they
can put up a picture – they know that they can achieve
their target outcome (putting up the picture) with the
acquisition of the hammer. Unfortunately, in the
context of software development it is not as
straightforward to make the link between the delivery
of the output (the software) and the achievement of the

customer's target outcomes. Many people simply don't
even try. This creates a large risk that the supplier will
only deliver what the customer asked for – a vague set
of Output-Based Requirements – rather than what the
customer actually needs, which is to achieve the target
outcomes.
 Software development involves the transformation
of ideas into deliverables to achieve business
objectives. The catalyst for the IT project is generally
a business case. This justifies at a strategic and
financial level the acquisition of the software. The
anticipated cost of the software is justified by various
assumptions such as the improvement of business
processes, increase in market share, increased revenue,
reduction of support costs and so on. Following
internal approval of the business case, the Output-
Based Requirements are then collected and assimilated
from everyone at the customer's organisation who has
an interest in the resulting software system.
 So if a business case generally precedes the
specification of the Output-Based Requirements, why
is it the case that the resulting software will not
necessarily meet the target outcomes?
 Firstly, the business case is untested. In many
business cases there are elements which are based on
assumptions rather than facts. These assumptions have
not been proved to be true, and it is probable that many
of them are in fact erroneous. Ideally, those
assumptions should be tested before significant
resources are invested in building a software system
that delivers against the business case. But that rarely
happens.
 Secondly, the business case is typically produced at
a high level and with a view to obtaining funding or
budgetary approval. It is not uncommon for the
business case to be very ambitious in terms of what the
software will achieve, as this provides a better
argument for investing in the acquisition of the
software. It is less common for the business case to
play an active role in steering the direction of the IT
project. It is even less common for anyone to revisit
the business case in the light of the progress of the IT
project or to measure the progress of the IT project
with reference to the business case.
 The implications of this cannot be understated. The
DoD is one of the most sophisticated IT purchasers
worldwide: it has a significant amount of leverage in
negotiating contract terms because its annual spend its
so large. And yet it derives practically no immediate
business value from its investment in software
development. Is it possible that other organisations,
with less experienced procurement functions, actually
derive less business value from their IT spend?
 The most effective way for any organisation to
reduce its IT spend is to ensure that only software

48444846

which delivers business value is built. We need to
consciously connect the levels and clarify how the
resulting software will deliver business results.

3.3. Existing business model failure

 What is unusual about the IT project failure of Levi
Strauss in the US is that the company had already
installed SAP successfully across its Asia-Pacific
region. Although commentators can only guess, it is
thought that perhaps the failure of the rollout in the US
region was due to unexpected complexity in the
financial environment at the company headquarters or
due to project management issues unique to the US
rollout [12].
 The Contract Model does not address the
possibility of existing business model failure risk.
There is simply no recognition of the fact that when a
new software system is launched, this may impact on
the existing business processes.
 Perhaps, back in the 1980s when the Contract
Model was first used, software systems were fairly
discrete and limited in terms of their operation.
However, today software systems are used for virtually
every business function of an organisation. There may
be end users at multiple levels of the organisation – for
example, the finance director, accounts department,
marketing director, marketing team and sales team may
all need to use the same software system. This
software system may interlink with other software
systems within the organisation which are used by
other end users. The software system may also
interface with software systems of other organisations
– such as the clients or the suppliers of the
organisation.
 In light of the many business processes that may be
impacted by a new software system, it is essential that
the transition to this system is managed in a way that
contains the risk of existing business model failure to a
minimum. However, the Contract Model generally
requires that all of the Output-Based Requirements are
delivered as a single batch. The larger the IT project
and the larger this batch will probably be.
 For many organisations it is simply not realistic to
attempt to assimilate a software system of this scale
and complexity into their existing business processes
all at once. The risk of any of those existing business
processes falling down under the enormity of the
change are huge. It would be much better if the
transition to the new system was managed in smaller
launches, with an emphasis on the quality of the user
experience throughout the transition.

4. Suboptimal design

 It is inevitable that the Contract Model will lead to
suboptimal design. The Contract Model mandates
practices that are directly at odds with what is currently
regarded as best practice for creating high quality
software design.
 Sequential Development is a flawed and discredited
development methodology. It is no longer used by
many of the top software development organisations
which favour incremental development with fast and
iterative feedback. One of the most serious failings of
Sequential Development is that all aspects of the
design must be finalised before development starts.
 That is like trying to design a bike without being
able to build it or test-ride it. Every attribute of the
bike needs to be considered in the greatest of detail
without the knowledge of how the totality of those
attributes will perform as a whole. It is possible that
the combination of those attributes as described by the
designers might not even look like a bike as we know
it. How will the combination of those attributes
perform under stress? If the lightest of titanium bike
frames is used, how will it perform at speed? If the
thinnest of tyres is chosen, how will they perform
when a heavy cyclist rides against a strong headwind
on a wet and greasy road? It is simply not possible for
the designers to know the answer to all these questions.
As a result, the design is premised on both fact and
assumptions, and it is not clear from the design which
is which.
 To compound the problem, the design deliverable is
a highly technical document which is probably
unintelligible to many customers. The Contract Model
requires the customer to approve the design deliverable
before it is handed over to the programmers. However,
it is not uncommon for the contract to provide that this
does not in any way commit the customer to the design
deliverable. The supplier must still ensure that the
finished software complies with all of the Output-
Based Requirements.
 In other words, contractually speaking, the design
process does not advance the position of either the
customer or the supplier. There is no opportunity for
either party to exploit any new insights or information
that is gained during the design process. The contract
literally treats the design process as a document-
writing exercise.
 Sequential Development, as mandated by the
Contract, effectively encourages the supplier to
structure its resources such that the designers and
programmers are in separate teams. With the
programmers physically and often geographically
removed from the designers, it is likely that the only
information that the programmers have from which to

48454847

base their build of the software is the design
deliverable. They have little insight into the business
objectives of the customer, and they are unlikely to
have access to any representatives from the customer
to work this out. By the time the programmers start
work, the team of designers has probably been
disbanded and the various individuals assigned to other
IT projects.
 There is a significant risk of misunderstandings and
misinterpretation of the design deliverable by the
supplier's programmers. It is also inevitable that when
the programmers start coding, they will find things that
question the design. How can the programmers resolve
those questions effectively in such circumstances?
 High quality software design involves an interplay
of many factors. The system's central concepts must
work together as a smooth, cohesive whole. There is a
fine balance of the various attributes of the software,
such as the flexibility, maintainability, efficiency and
responsiveness. Plus the users' overall experience of
the software needs to be taken into account. How
intuitive is it to use? How well does the software deal
with the idiosyncrasies of the users? How well does it
keep up with changes in the domain? How well does it
solve the users' problems? It is virtually impossible to
strike the appropriate balance when each of the
customer, the designers and the programmers are kept
at arms' length.
 The development process is initiated with the
Output-Based Requirements, which are specified in the
contract. By definition, these are collected and written
by the customer before the project starts. At this point
in time, the customer's knowledge and understanding
of the ultimate solution is at its least well formed. It is
therefore counter-intuitive for the customer to decide
what it wants at a time when it is least well equipped to
do so. Yet by incorporating the Output-Based
Requirements in the contract and calling them
'requirements', it becomes mandatory for the supplier
to deliver software that meets all of these so-called
'requirements'.
 On closer analysis many of the Output-Based
Requirements are not in fact mandatory. Instead, many
of them are in fact architecture, design, implementation
and installation/configuration constraints that are
unnecessarily specified as requirements. The customer
often inappropriately specifies how to build the
software system rather than what the software system
should do or how the software system should perform.
This happens because the customer incorrectly
assumes that a common way to implement a
requirement is actually the only way to implement the
requirement, so they confuse the implementation with
the requirement. By unnecessarily specifying
constraints, the customer inadvertently prevents the

supplier from selecting the optimal solution for the
problem [13].
 In many contracts the fees payable by the customer
to the supplier are determined with reference to the
Output-Based Requirements. These provide the basis
on which the supplier arrives at a fixed price, or they
determine the amount of resources that are in fact used
by the supplier (for example, the fees are based on time
and materials or the number of features, function points
or story points). The more Output-Based
Requirements that are detailed in the contract, and the
more expensive the IT project is likely to be. If the
supplier is rewarded for delivering output, it is
incentivised to create more output.
 Redundant system features can be damaging to the
overall integrity of a product. Redundant features do
not necessarily add value: they lead to greater
complexity and potentially render the product less
intuitive to use. For example, some digital watches
have so many buttons and are so complex that it is
virtually impossible to carry out one of the most basic
requirements such as changing the time without
referring to the user manual.
 A combination of a single set of Output-Based
Requirements together with Sequential Development
means that the customer only gets one opportunity at
the start of the IT project to describe its requirements,
without paying a premium for additional requirements
under the Change Control Mechanism. As a rational
response to this situation, the customer tends to err on
the side of caution in the contract by over-specifying
the Output-Based Requirements. The customer is
effectively encouraged to ask for anything and
everything it might possibly need, as it generally
doesn't know at the beginning of the IT project exactly
what it does need.
 This inevitably leads to an unnecessary padding of
the features in the software. What is built is the
'biggest possible' product, not the 'minimal valuable'
product. Not only are additional features requested
that may not be needed, but each feature may be
specified to an unnecessarily high standard, known as
'gold plating'.
 A lot of the features in bespoke software are simply
not used. Our own experience suggests that more than
40% of the features are redundant. The findings of the
DoD suggest that as many as ninety eight per cent
(98%) of the features could be redundant [14].

5. A poor return on investment

 For too long software development has not been
held to account as a business activity. Many
organisations regard software development as a

48464848

necessary evil which places enormous strain on their
finances. They treat the IT department as a cost centre
rather than as a value creation centre. However, in
most organisations there has to be a business case for
acquiring software before the organisation will
contemplate making the investment. Central to any
business case is generally the desire to increase profits,
to protect revenue or to reduce costs.
 This in turn means that any IT project must be
assessed by its economic impact. The cost of the
resources invested by the customer in the software
development activity should be directly referenced to
the resulting increase in profits, protection of revenue
or reduction of costs. It is only when the software
development activity is analysed in these terms that the
customer can assess whether it has achieved a good
return on investment.
 The Contract Model mandates a development
process that has been proven to be neither efficient nor
cost-effective. It is inevitable that the customer will
only achieve a poor return on investment.
 As discussed earlier, Sequential Development does
not involve the expertise of the supplier's programmers
until later on in the IT project. If the programmers
who understand the details of the software system are
not involved early in the IT project, the pitfalls will not
become apparent until much later in the process, when
their discovery often results in much more costly
redesigns and cascading delays [15].
 "The solution to this well-known problem is not to
complete the entire design and get sign-offs. The
solution is to involve those who will have to implement
and live with the design early in the process and drill
down as much as is necessary to be sure that lurking
problems have been uncovered and addressed [16]."
 Another unwelcome consequence of a combination
of a single set of Output-Based Requirements together
with Sequential Development is a lack of transparency
for the customer of a break-down of costs incurred in
the IT project. The customer is not provided with any
indication of the relative cost of the individual Output-
Based Requirements. If the customer was privy to this
information, it may reassess whether it actually needs
all of the specified Output-Based Requirements.
 The customer also does not have transparency of
the relative cost of the performance qualities of the
resulting system as expressed in the Output-Based
Requirements. For example, many customers do not
appreciate the relative cost implications of increasing
system availability from, say, 99.9% to 99.95%. This
is not a linear progression. Instead, as system
availability approaches 100%, the costs increase
exponentially. In order to achieve a higher level of
availability it may be necessary to run mirror systems.
The costs of the hardware may be doubled or even

quadrupled to ensure there are sufficient levels of
redundancy.
 The same is true for other performance qualities.
As the performance quality approaches perfection, its
associated cost increases exponentially towards
infinity. If the customer is unaware of the cost
implications, it may inadvertently ask for performance
qualities that cannot be justified on a cost-benefit
analysis [17].
 Sequential Development leads to enormous waste.
At each stage of the development process the Output-
Based Requirements are worked on by a different
team. The transfer of the Output-Based Requirements
from one team to the next is known as a hand-off.
Each hand-off leads to a loss of knowledge, some of
which is never replicated and the rest of which has to
be built up again by the next team:
 "Each handoff of an artefact is fraught with
opportunities for waste. The biggest waste of all in
document handoffs is that documents don't - can't,
really - contain all of the information that the next
person in line needs to know. Great amounts of tacit
knowledge remain with the creator of the document
and never get handed off to the receiver. Moving
artefacts from one group to another is a huge source of
waste in software development [18]."
 The Contract Model mandates that all of the
Output-Based Requirements flow en masse through
each of the gated stages of the development process.
Large batches seem attractive because they appear to
generate economies of scale that increase efficiency.
The idea of large batches conjures up images of large
numbers of car parts moving along the conveyor belt in
a factory as they are assembled.
 However, whilst it may be possible to achieve
economies of scale in manufacturing, it is not the case
in software development. In software development
this efficiency gain is an illusion. Indeed, there can be
strong diseconomies associated with large batches in
software development. There are many ways in which
a large batch adversely impacts the economics and
performance of software development. Here we
examine just a few of them.
 The supplier's development team is presented with
all of the Output-Based Requirements en masse. This
often leads to the development team becoming
overwhelmed by the scale and complexity of the IT
project, leading to what is commonly referred to as
'analysis paralysis'. In a study conducted by Capers
Jones in 2000 it was found that as the size of a IT
project increases (measured in language-independent
function points), the monthly productivity of staff
decreases significantly [19].
 The batch of Output-Based Requirements acquires
the properties of its most limiting element. For

48474849

example, if one module of code is particularly
challenging, it may potentially hold up the delivery of
the entire IT project. It is possible that this particular
module is not even a priority for the customer. The
supplier's development team is unlikely to be given any
steer on which of the Output-Based Requirements are
the most important for the customer, so they are not
capable of making an informed decision. In any event,
if the supplier does not deliver software that meets all
of the Output-Based Requirements, the supplier will be
in breach of the contract. The Contract Model does not
take into account the relative value to the customer of
any particular Output Requirement, and it is hard to
ascertain this from the contract.
 Any performance quality required by the customer
applies by default to all of the Output-Based
Requirements. For example, if the customer requires
the software to be 99.9% available, the entire software
system must be 99.9% available. As explained earlier,
it can be very expensive to achieve 99.9% availability.
However, it may be the case that only the end-user
interfaces need to be 99.9% available. For example, if
an end user places an order to buy something on a
website, an order confirmation should be generated
99.9% of the time, but it may not be necessary for the
system to check immediately whether the requested
item is in stock.
 By breaking down the overall system into
constituent modules, it may be possible to be more
specific about which performance qualities should
apply to which modules. This is an effective way of
reducing the costs involved in building the software
system.
 If the supplier is rewarded for delivering output, it
is incentivised to create more output. Unwanted
and/or unused features in software lead to an enormous
amount of waste. It takes longer to develop the
software successfully and, as a result, the development
process becomes unnecessarily expensive. Once
developed, the overly-engineered software is more
prone to error and costs more to maintain.
 We consider it better practice to only develop those
features which deliver immediate value to the
customer. Further features should only be added as
and when there is a proven business case that can be
aligned to the return on investment. This keeps the
customer's options open: they can choose whether to
continue to invest in the software or whether to invest
in another area which will provide a greater return on
investment. In any case, redundant features and
features specified to an unnecessarily high standard
may further extend the schedule and increase the
associated costs.

6. An alternative approach

 We believe that the time has come to broaden the
traditional approach to contracts and to form a new
perspective based on complexity science. Over the last
decade the principles of complexity science have been
applied to governments and a broad range of industries,
and their usage has been slowly extended in the field of
project management.
 The Stacey Matrix is a useful map for navigating
through the concepts and field of complexity [20]. It
provides helpful guidance on selecting the appropriate
management style based on two dimensions: the degree
of certainty and level of agreement on the issue in
question. From these two dimensions four different
contexts are identified: simple, complicated, complex
and anarchy (also referred to as chaos).

Figure 1. Stacey Matrix

 Traditional contracts work well in simple contexts
(the realm of 'known knowns') and complicated
contexts (the realm of 'known unknowns'). In each of
these contexts there is relative certainty and stability,
and there is a reasonably clear relationship between
cause and effect (although in a complicated context
there are multiple right answers and expertise is
required to determine the right answer). So it is
possible to create a plan and monitor performance in
terms of conformance to the plan.
 However, the context for software development is
complex. This is the realm of 'unknown unknowns'
where unfortunately it is not possible to impose the
'right answer'. Demanding certainty in the face of
uncertainty is dysfunctional. Instead, complex
problems require a more experimental mode of

48484850

management.
 In a complex context the role of management is to
set goals and constraints that provide boundaries within
which creativity and innovation can flourish.
Performance is measured in terms of movement
towards the goals rather than assessing compliance to
an earlier plan. Inspection of the IT project should
occur frequently and often so that any unacceptable
variances in the process can be detected. If the
inspection highlights that one or more aspects of the
processes are outside acceptable limits and that the
resulting product will not achieve the stated goals, the
process and/or the solution being developed must be
adjusted.

This management style, which is appropriate for
complex contexts, provides a theoretically sound basis
for the structure of a contract model for software
development. However, the enormity of moving to
such a model should not be underestimated.
Significant education is required and this would
involve a large cultural shift.

7. Conclusion

 Much research and many studies have been carried
out on IT projects to try to understand why there are so
many failures and why the extent of those failures can
be so great. Yet to date the Contract Model has been
largely ignored. We believe that the Contract Model is
in need of a total overhaul. Indeed, a new model is
required that is based on complexity science. With
our increasing dependency on IT and escalating costs
of IT spend, an overhaul of the Contract Model cannot
happen soon enough.

8. References

[1] Report by the Comptroller and Auditor General of the
National Audit Office, "The failure of the FiReControl
project", 1 July 2011.

[2] Alexander Budzier and Bent Flyvbjerg, "Double
whammy – How ICT IT projects are fooled by randomness
and screwed by political intent", Said Business School
working papers, Oxford, England, August 2011; Michael
Krigsman, "Levi Strauss: SAP rollout 'substantially' hurt
quarter", www.zdnet.com, 18 July 2008; John Sterlicchi,
"Software disaster slows Levi Strauss's resurgence",
www.guardian.co.uk, 14 July 2008.

[3] The Standish Group, "The CHAOS Report", 2011.
Whilst the methodology and the conclusions of the CHAOS
Reports have been called into question, these reports still
remain the most comprehensive surveys to date, and in our
experience anecdotal evidence is largely consistent with the
findings of the CHAOS Reports.

[4] Infra. Reference [2].

[5] Infra Reference [1].

[6] Daniel McCracken and Michael Jackson, "Lifecycle
Concept Considered Harmful", ACM Software Engineering
Notes, April 1982.

[7] Capers Jones, "Applied software measurement; Global
analysis of productivity and quality" McGraw Hill, 2008;
Barry Boehm and Philip Papaccio, "Understanding and
Controlling software costs", IEEE Transactions on Software
Engineering, Vol. 14, No. 10., October 1988.

[8] Eric Ries, "'The lean startup: how today's entrepreneurs
use continuous innovation to create radically successful
businesses", Portfolio Penguin, England, 2011.

[9] Susan Atkinson and Gabrielle Benefield, "The curse of
the change control mechanism", Society for Computers &
Law publication, England, May 2011.

[10] Infra. reference [1].

[11] The results of the study were presented at the 5th
Annual Joint Aerospace Weapons Systems Support, Sensors,
and Simulation Symposium (JAWS S3) in 1999.

[12] Infra. Reference [2].

[13] 'Common requirements problems, their negative
consequences, and the industry best practices to help solve
them' by Donald Firesmith, Journal of Object Technology,
Volume 6, No. 1, January – February 2007.

[14] 'Managing the design factory: a product developer's
toolkit' by Donald Reinertsen, The Free Press 1997.

[15] Infra Reference [11].

[16] 'Leading Lean Software Development: Results are
Not the Point' by Mary and Tom Poppendieck, Addison-
Wesley (2010).

[17] 'Competitive Engineering' by Tom Gilb,
Butterworth Heinemann (2007).

[18] 'Lean Software Development: An Agile Toolkit'
by Mary and Tom Poppendieck, Addison-Wesley (2003).

[19] 'Software Assessments, Benchmarks, and Best
Practices' by Capers Jones, Addison-Wesley (2000).

[20] 'Complexity and Creativity in Organizations' by
Ralph Douglas Stacey, Berrett•]Koehler Publishers (1996).

48494851

