
VOL. 21 ISSUE 3  AUGUST/SEPTEMBER 2010 MAGAZINE OF THE SOCIETY FOR COMPUTERS AND LAW 1

www.scl.org  contracts

W
ith the credit

crunch likely

to affect every

aspect of the

global economy, the prospect of

declining revenue threatens to

erode the profitability of many

businesses.

So the challenge is to

preserve cash and

cut costs. But how

does this affect

IT? Cutting back

on IT projects is

not necessarily an

option.

Software is

the engine of the

modern enterprise.

Indeed, for many

organisations it is

their primary source

of competitive

advantage. It does

not make sense

to stop software

development as

this may adversely

affect the ability

of the business

to drive efficiency

and reduce costs,

or to accelerate

innovation.

Organisations

are increasingly

looking to develop

software in short-term projects

with low capital expenditure and

visibility throughout the process,

enabling them to assess

their return on investment at

regular intervals. Agile software

development methodology

meets these needs. The four key

values of the Agile manifesto

are:

•	 individuals and interactions

over processes and tools

•	 working software

over comprehensive

documentation

•	 customer collaboration over

contract negotiation

•	 responding to change over

following a plan.

There is a focus on delivering

value in the form of working

software early and often. Agile

divides a software development

project into small cycles – often

referred to as ‘iterations’ – which

are each typically less than a

month in duration. At the end

of each iteration, fully tested,

working software, that is capable

of being deployed, is delivered.

Each subsequent iteration

results in additional software

that builds upon or complements

the software that has already

been developed.

The effect of this is that

the customer has visibility

throughout the project of

each software module as it is

developed. And instead of the

customer having to make a

large up-front investment without

any real certainty over the final

product, the customer can

re-evaluate its expenditure and

software needs at the end of

each iteration.

Not only this, but an Agile

project is flexible enough

to adapt to the changing

requirements of the customer

over time. Instead of the

requirements for the project as

a whole being finalised at the

start of the project, the parties

agree on the requirements for

the software to be developed in

each iteration at the beginning

of that iteration. This means

that, as the customer gains an

enhanced understanding of the

software product over the course

of the project, it can refine its

requirements for the software

in subsequent iterations. Any

changes to the customer’s

business model over the course

of the project can also be

incorporated.

The Agile approach marks

a step change from the more

traditional methods of software

development based on the

waterfall model. This is no

accident. Agile has arisen as

a backlash to the waterfall

method. Critics of the waterfall

method find its style too rigid,

and believe that its application

is responsible to some extent for

many failed software projects.

The waterfall model is a

sequential development process,

in which development is seen

as flowing steadily downwards –

like a waterfall – through the

phases of conception, initiation,

analysis, design, construction

and testing. The output of each

phase provides the input for

the next stage. And all of the

requirements of the customer

need to be specified before

any design or development can

begin.

One of the main criticisms

of the waterfall model is that

it is unrealistic to specify the

requirements upfront. Often, the

customer doesn’t actually know

what it wants at this point, and

the problem is compounded by

the fact that over the lifecycle of

the project, which can be several

Software Development: How
Agile Are You?

Susan Atkinson

describes the Agile

software development

methodology and explains

its crucial relevance to

lawyers

VOL. 21 ISSUE 3  AUGUST/SEPTEMBER 2010MAGAZINE OF THE SOCIETY FOR COMPUTERS AND LAW2

www.scl.org  contracts

years, business requirements

will change. Also, many ‘change

management’ processes have

the effect of preventing change

rather than managing it. This

increases the likelihood that the

software is built according to

the specification, but decreases

the likelihood that the system

reflects the true needs of the

customer.

Additionally, there is now a

common understanding in the

project management community

that a project that attempts to fix

all three key constraints – scope

(ie features and functionality),

time, and cost – is doomed to

failure. At least one of these

constraints must be allowed

to vary, otherwise quality will

suffer. Yet the traditional software

development contract does

indeed try to fix all three key

constraints: it typically has at its

core a fixed set of requirements,

a fixed timetable, and often a

fixed price.

Despite the software

industry’s move away from

the waterfall method, many IT

contracts are outdated in that

they are still drafted on the

basis of the waterfall method,

and not Agile. This matters,

because the methodology

affects everything – gathering

the business requirements,

development, design, testing,

payment, warranties, and

allocation of responsibility

between the parties. If the

contract does not reflect the

process or methodology,

the contract itself becomes

detrimental to the software

project.

The formalised

specifications, processes

and deadlines mandated in a

traditional contract based on

the waterfall model are likely

to conflict with the informal,

complex and incremental

developments delivered under

Agile development that are

constantly evolving to meet

changing business requirements.

This can cause unnecessary

tensions between the parties in

terms of how an Agile project

is implemented. Worse still, if

disputes do arise, a contract

that does not reflect the parties’

actual practices in the software

development will merely add

confusion and complexity to any

form of resolution or settlement.

Agile certainly provides

contractual challenges.

Generally speaking, the

role of the lawyers is to provide

clarity, safeguards, and controls

in commercial arrangements.

So at first take it is quite alien

to draft contracts that allow

for information requirement

changes, continuous delivery,

close collaboration, and for

which the focus is on delivery

against a target schedule rather

than on a pre-agreed set of

requirements.

But there is no doubt that

the Agile approach has entered

the mainstream. In a recent

survey, more than 50% of

the respondents said that at

least half their organisation’s

software projects used an Agile

methodology. Large companies

such as IBM, BSkyB, BT and

British Airways are all using

Agile methods for their software

development.

Lawyers must be alive to

the differences between the two

styles of software development,

and if the Agile method is

being adapted, they must use

new software development

contracts that reflect this

approach. Otherwise, lawyers

are unwittingly imposing a

contractual constraint that

could prejudice the success

of the software development

project. ●

Susan Atkinson is Director,
Corporate & Commercial
Groups, Gallenalliance
Solicitors: satkinson@
gallenalliance.com

The formalised
specifications, processes
and deadlines
mandated in a traditional
contract based on the
waterfall model are
likely to conflict with
the informal, complex
and incremental
developments
delivered under Agile
development that are
constantly evolving to
meet changing business
requirements. This can
cause unnecessary
tensions between the
parties in terms of
how an Agile project
is implemented. Worse
still, if disputes do arise,
a contract that does not
reflect the parties’ actual
practices in the software
development will
merely add confusion
and complexity to any
form of resolution or
settlement.

